High Temperature Gas-cooled Reactor Technology Training Curriculum

Presented by Idaho National Laboratory July 16-17, 2019

Day 1 – Tuesday July 16, 2019			
Time	Торіс	Presenter	
8:30	High Temperature Gas-cooled Reactor: Introduction	Hans Gougar	
	 Motivation and Applications for HTGRs 		
	 High Level HTGR Design and Safety Approach 		
8:50	High Temperature Gas-cooled Reactor: History	Hans Gougar	
	• Overview: U.S., World Experience (Experimental, Demo, or Commercial)		
	Evolution of HTGRs		
	Lessons Learned		
9:30	Break		
9:45	High Temperature Gas-cooled Reactor: Core Design	Hans Gougar	
	General Attributes of Modular Prismatic and Pebble Bed HTGRs		
	o Physics		
	 Neutronics 		
	 Prismatic and Pebble Fuel 		
	 Thermal-Fluidics 		
	 Inherent Safety 		
	Plant Systems and Power Conversion		
	 Reactivity Control 		
	 Instrumentation and Control 		
	 Helium Conditioning 		
	• Power Conversion		
	Normal Operation and Power Maneuvers		
11:30	Lunch		
12:30	TRISO Fuel: Design, Manufacturing, and Performance	Paul Demkowicz	
	Background and History		
	Fabrication and Quality Control		
	Irradiation Performance		
	Accident Performance		
	Fuel Performance Modeling		
1:45	Modular High Temperature Gas-cooled Reactor: Safety Design Approach	Jim Kinsey	
	HTGR Design Criteria		
	Inherent and Passive Safety		
	Prevention vs. Mitigation		
	Radionuclide Sources/Barriers		
	Residual Heat Removal		
	Reactivity Control		
	Reactor Building		

High Temperature Gas-cooled Reactor Technology Training Curriculum

Presented by Idaho National Laboratory July 16-17, 2019

Day 1 – Tuesday July 16, 2019				
Time	Торіс	Presenter		
2:45	Break			
3:00	 Modular High Temperature Gas-cooled Reactor: Accident Analysis Types of Potential Accidents Reactor Response Safety Analysis Approach Codes and Tools Experimental Validation 	Hans Gougar		
4:00	 Modular High Temperature Gas-cooled Reactor: Accident Analysis (continued) Licensing Modernization Project Use of PRA in LMP, ASME/ANS Non-LWR PRA Standard Methods for Incorporating Passive System Reliability into a PRA 	Jim Kinsey		
5:00	Adjourn			

Day 2 – Wednesday July 17, 2019				
Time	Торіс	Presenter		
8:30	TRISO Fuel: Mechanistic Source Term	Paul Demkowicz		
	Radionuclide Barriers			
	Radionuclide Design Criteria			
	Computational Tools			
	Source Term Estimation			
9:30	Modular High Temperature Gas-cooled Reactor: Licensing Experience	Jim Kinsey		
	 Past US HTGRs Licensing Approach 			
	Summary of NGNP Experience			
10:00	Break			
10:15	Modular High Temperature Gas-cooled Reactor: Licensing Experience (cont.)	Jim Kinsey		
	NRC Regulatory Approach Assessment (Next Generation Nuclear Plant)			
11:00	High Temperature Gas-cooled Reactor: Materials	Richard Wright		
	Nuclear Graphite Components			
	 Structural Alloys for HTGR and VHTR Systems 			
	 Component Design (Materials and Applications) 			
12:00	Lunch			
1:00	Group Discussion and Review	Hans Gougar		
2:15	Overview and Concluding Remarks	Hans Gougar		